A General Framework for Observation Driven Time-Varying Parameter Models

نویسندگان

  • Drew Creal
  • Siem Jan Koopman
  • André Lucas
چکیده

We propose a new class of observation driven time series models that we refer to as Generalized Autoregressive Score (GAS) models. The driving mechanism of the GAS model is the scaled likelihood score. This provides a unified and consistent framework for introducing time-varying parameters in a wide class of non-linear models. The GAS model encompasses other well-known models such as the generalized autoregressive conditional heteroskedasticity, autoregressive conditional duration, autoregressive conditional intensity and single source of error models. In addition, the GAS specification gives rise to a wide range of new observation driven models. Examples include non-linear regression models with time-varying parameters, observation driven analogues of unobserved components time series models, multivariate point process models with time-varying parameters and pooling restrictions, new models for time-varying copula functions and models for time-varying higher order moments. We study the properties of GAS models and provide several non-trivial examples of their application.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online Monitoring for Industrial Processes Quality Control Using Time Varying Parameter Model

A novel data-driven soft sensor is designed for online product quality prediction and control performance modification in industrial units. A combined approach of time variable parameter (TVP) model, dynamic auto regressive exogenous variable (DARX) algorithm, nonlinear correlation analysis and criterion-based elimination method is introduced in this work. The soft sensor performance validation...

متن کامل

Modeling and Forecasting Iranian Inflation with Time Varying BVAR Models

This paper investigates the forecasting performance of different time-varying BVAR models for Iranian inflation. Forecast accuracy of a BVAR model with Litterman’s prior compared with a time-varying BVAR model (a version introduced by Doan et al., 1984); and a modified time-varying BVAR model, where the autoregressive coefficients are held constant and only the deterministic components are allo...

متن کامل

Numerical analysis of gas flows in a microchannel using the Cascaded Lattice Boltzmann Method with varying Bosanquet parameter

Abstract. In this paper, a Cascaded Lattice Boltzmann Method with second order slip boundary conditions is developed to study gas flows in a microchannel in the slip and transition flow regimes with a wide range of Knudsen numbers. For the first time the effect of wall confinement is considered on the effective mean free path of the gas molecules using a function with nonconstant Bosanquet para...

متن کامل

Evaluation CMIP5 Models In Order to Simulate Rainfall by using a Combination of Precipitation data Network Aphrodit and Satellite Precipitation Persiann-cdr In Khuzestan Province

One of the most important Limitation General Circulation Models , Large scale are being simulation of climatic variables. So should With Various method are downscaled, The ability to have identified a study area. Choose a suitable GCM model for the study area Very important role In the simulation  parameter (precipitation) is intended for future. In this research of CMIP5 Models Contains BCC-CS...

متن کامل

Filtering With Confidence: In-sample Confidence Bands For GARCH Filters

There is vast empirical evidence that for many economic variables conditional variances and covariances change over time. Given the importance of heteroscedasticity in finance and macroeconomics1 it is not surprising that estimation of the time-varying volatility has attracted substantial attention in the literature. As any time-varying parameter, volatility can be modelled both with observatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008